Oligomeric amyloid-beta induces MAPK-mediated activation of brain cytosolic and calcium-independent phospholipase A2 in a spatial-specific manner
نویسندگان
چکیده
Alzheimer's disease (AD) is histopathologically characterized by the build-up of fibrillar amyloid beta (Aβ) in the form of amyloid plaques and the development of intraneuronal neurofibrillary tangles consisting of aggregated hyperphosphorylated Tau. Although amyloid fibrils were originally considered responsible for AD pathogenesis, recent convincing evidence strongly implicates soluble oligomeric Aβ as the primary neurotoxic species driving disease progression. A third largely ignored pathological hallmark, originally described by Alois Alzheimer, is the presence of "adipose inclusions", suggestive of aberrant lipid metabolism. The molecular mechanisms underlying these "lipoid granules", as well as their potential link to soluble and/or fibrillar Aβ remain largely unknown. Seeking to better-understand these conundrums, we took advantage of the powerful technology of multidimensional mass spectrometry-based shotgun lipidomics and an AD transgenic mouse model overexpressing mutant amyloid precursor protein (APP E693Δ-Osaka-), where AD-like pathology and neurodegeneration occur as a consequence of oligomeric Aβ accumulation in the absence of amyloid plaques. Our results revealed for the first time that APP overexpression and oligomeric Aβ accumulation lead to an additive global accumulation of nonesterified polyunsaturated fatty acids (PUFAs) independently of amyloid plaques. Furthermore, we revealed that this accumulation is mediated by an increase in phospholipase A2 (PLA2) activity, evidenced by an accumulation of sn-1 lysophosphatidylcholine and by MAPK-mediated phosphorylation/activation of group IV Ca2+-dependent cytosolic (cPLA2) and the group VI Ca2+-independent PLA2 (iPLA2) independently of PKC. We further revealed that Aβ-induced oxidative stress also disrupts lipid metabolism via reactive oxygen species-mediated phospholipid cleavage leading to increased sn-2 lysophosphatidylcholine as well as lipid peroxidation and the subsequent accumulation of 4-hydroxynonenal. Brain histological studies implicated cPLA2 activity with arachidonic acid accumulation within myelin-rich regions, and iPLA2 activity with docosahexaenoic acid accumulation within pyramidal neuron-rich regions. Taken together, our results suggest that PLA2-mediated accumulation of free PUFAs drives AD-related disruption of brain lipid metabolism.
منابع مشابه
Amyloid-beta peptide induces temporal membrane biphasic changes in astrocytes through cytosolic phospholipase A2.
Oligomeric amyloid-beta peptide (Abeta) is known to induce cytotoxic effects and to damage cell functions in Alzheimer's disease. However, mechanisms underlying the effects of Abeta on cell membranes have yet to be fully elucidated. In this study, Abeta 1-42 (Abeta(42)) was shown to cause a temporal biphasic change in membranes of astrocytic DITNC cells using fluorescence microscopy of Laurdan....
متن کاملNeurobiology of Disease Phospholipases A2 Mediate Amyloid- Peptide-Induced Mitochondrial Dysfunction
Mitochondrial dysfunction has been implicated in the pathophysiology of Alzheimer’s disease (AD) brains. To unravel the mechanism(s) underlying this dysfunction, we demonstrate that phospholipases A2 (PLA2s), namely the cytosolic and the calcium-independent PLA2s (cPLA2 and iPLA2 ), are key enzymes mediating oligomeric amyloidpeptide (A 1– 42)-induced loss of mitochondrial membrane potential an...
متن کاملRegulation of arachidonic acid release and cytosolic phospholipase A2 activation.
The 85-kDa cytosolic PLA2 (cPLA2) mediates agonist-induced arachidonic acid release in many cell models, including mouse peritoneal macrophages. cPLA2 is regulated by an increase in intracellular calcium, which binds to an amino-terminal C2 domain and induces its translocation to the nuclear envelope and endoplasmic reticulum. Phosphorylation of cPLA2 on S505 by mitogen-activated protein kinase...
متن کاملStudy of association between genetic polymorphisms of phospholipase A2 enzymes and Alzheimer's disease.
Several genes have been related to late-onset Alzheimer's disease (LOAD). Phospholipases A2 (PLA2) influence the processing and secretion of the amyloid precursor protein, which gives rise to the beta-amyloid peptide, the major component of the amyloid plaque in AD. Hence, in the present study, polymorphisms of three genes encoding PLA2 enzymes group (cytosolic PLA2: BanI cPLA2 polymorphism; ca...
متن کاملIsolation of a Human Myocardial Cytosolic Phospholipase A 2 Isoform Fast Atom
Recent studies have demonstrated the existence of a novel family of calcium-independent plasmalogen-selective phospholipases A2 in canine myocardium that have been implicated as enzymic mediators of ischemic membrane damage. We now report that human myocardium contains two functionally distinct isoforms of cytosolic calcium-independent phospholipase A2. The major cytosolic phospholipase A2 isof...
متن کامل